Cours de français gratuitsRecevoir 1 leçon gratuite chaque semaine // Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés

100% gratuit !
[Avantages]

  • Accueil
  • Accès rapides
  • Imprimer
  • Livre d'or
  • Plan du site
  • Recommander
  • Signaler un bug
  • Faire un lien

  • Comme des milliers de personnes, recevez gratuitement chaque semaine une leçon de français !

    > Recommandés:
    -Jeux gratuits
    -Nos autres sites
       



    Matrices

    Cours gratuits > Forum > Forum maths || En bas

    [POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


    Matrices
    Message de dani1505 posté le 21-04-2020 à 17:39:38 (S | E | F)
    Bonjour,
    J’aimerais recevoir une aide sur un exercice (pas compliqué mais que j’ai du mal à finir sur la dernière question).
    Voici l’exercice:

    On pose la matrice A = (0 1)
    -2 3

    1) Calculer les valeurs propres de A.
    2) Montrer que A est diagonalisable.
    3) Déterminer une base de vecteurs propres de A, et en déduire une matrice de passage P telle que (P^-1)*A*P= D soit diagonale. Exprimer les matrices D et P.
    4) Calculer A^k pour tout k appartenant à N (ensemble des entiers naturels)

    Jusqu’à la 3, tout est très facile. Je trouve 1 et 2 pour les valeurs propres de A, elles sont distinctes donc A est diagonalisable. Je trouve ensuite les vecteurs propres (1,1) et (1/2,1) puis j’en déduis D et P.
    C’est pour la question 4 ou ça coince. J’ai calculé les 5 premières matrices (pour k=1,2,3,4,5) et j’ai remarqué que la 2ème ligne de chaque matrice était là première ligne de sa matrice suivante. J’ai essayé de trouver une relation entre A^k et A^k+1 ou A^k-1 mais j’ai du mal.

    Merci d’avance pour votre aide.


    Réponse : Matrices de hicham15, postée le 21-04-2020 à 18:48:43 (S | E)
    Bonjour

    Vous avez (P^-1)*A*P= D Donc A = P*D*(P^-1).
    Alors ca sera simple maintenant de calculer les puissance de A.
    par exemple A^2 = P*D*(P^-1) * P*D*(P^-1) = P*D^2*(P^-1)
    D'une manière générale, A^k = P*D^k*(P^-1)
    Et les puissances d'une matrice diagonales sont simple à calculer... Donc c'est la formule demandé.
    cet exercice revient beaucoup, donc rappelez vous toujours que la diagonalisation facilite le calcul des puissances

    Bonne journée



    Réponse : Matrices de dani1505, postée le 21-04-2020 à 20:28:31 (S | E)
    Merci pour votre réponse.



    Réponse : Matrices de hicham15, postée le 21-04-2020 à 21:13:13 (S | E)
    De rien 👍




    [POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


    Cours gratuits > Forum > Forum maths

     


    > INDISPENSABLES : TESTEZ VOTRE NIVEAU | GUIDE DE TRAVAIL | NOS MEILLEURES FICHES | Les fiches les plus populaires | Recevez une leçon par semaine | Exercices | Aide/Contact

    > COURS ET EXERCICES : Abréviations | Accords | Adjectifs | Adverbes | Alphabet | Animaux | Argent | Argot | Articles | Audio | Auxiliaires | Chanson | Communication | Comparatifs/Superlatifs | Composés | Conditionnel | Confusions | Conjonctions | Connecteurs | Contes | Contraires | Corps | Couleurs | Courrier | Cours | Dates | Dialogues | Dictées | Décrire | Démonstratifs | Ecole | Etre | Exclamations | Famille | Faux amis | Français Langue Etrangère / Langue Seconde |Films | Formation | Futur | Fêtes | Genre | Goûts | Grammaire | Grands débutants | Guide | Géographie | Heure | Homonymes | Impersonnel | Infinitif | Internet | Inversion | Jeux | Journaux | Lettre manquante | Littérature | Magasin | Maison | Majuscules | Maladies | Mots | Mouvement | Musique | Mélanges | Méthodologie | Métiers | Météo | Nature | Nombres | Noms | Nourriture | Négations | Opinion | Ordres | Orthographe | Participes | Particules | Passif | Passé | Pays | Pluriel | Politesse | Ponctuation | Possession | Poèmes | Pronominaux | Pronoms | Prononciation | Proverbes | Prépositions | Présent | Présenter | Quantité | Question | Relatives | Sports | Style direct | Subjonctif | Subordonnées | Synonymes | Temps | Tests de niveau | Tous/Tout | Traductions | Travail | Téléphone | Vidéo | Vie quotidienne | Villes | Voitures | Voyages | Vêtements

    > INSEREZ UN PEU DE FRANÇAIS DANS VOTRE VIE QUOTIDIENNE ! Rejoignez-nous gratuitement sur les réseaux :
    Instagram | Facebook | Twitter | RSS | Linkedin | Email

    > NOS AUTRES SITES GRATUITS : Cours d'anglais | Cours de mathématiques | Cours d'espagnol | Cours d'italien | Cours d'allemand | Cours de néerlandais | Tests de culture générale | Cours de japonais | Rapidité au clavier | Cours de latin | Cours de provencal | Moteur de recherche sites éducatifs | Outils utiles | Bac d'anglais | Our sites in English

    > Copyright - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] [Plan du site] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée / Cookies. [Modifier vos choix]
    | Cours et exercices de français 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès. | Livre d'or | Partager sur les réseaux